1st Intensive Programme (Rethymnon)

The first Intensive Programme IP 1 – C5 SP-HE-IPL – Intensive programmes for higher education learners & C6 SP-IP-HE – Intensive programmes for teaching staff on “Plasma Physics & High Power Laser Matter Interactions/High Energy Density Physics – Theory and Experiments” was held in Rethynon, Crete during 2-13 of July 2018.

Number of Participating Students per Organization

Technological Educational Institute of Crete 3
Panepistimio Ioanninon 3
University of York 3
The Queen’s University of Belfast 3
Universite de Bordeaux 3
Ecole Polytechnique 3
Universidad de Salamanca 3
Ceske Vysoke Uceni Technicke V Praze 3

Training Program  (Timetable)


Lecture 1. Introduction, classification of plasmas/Particles motion in a plasma (2h) M. Tatarakis
o Main plasma parameters
o Classification of plasmas
o Single particle motion in a plasma
o Drift velocity
o Magnetic mirrors

Lecture 2. Ultrafast laser-matter interactions (2h) N. Papadogiannis
o Basics of linear laser matter interaction
o Evolution of laser technology
o Basics of Ultrafast and intense laser technology
o Basics of nonlinear laser matter interaction
o Ultrafast laser-solid surfaces interaction

Lecture 3. Basics of laser-atom interactions and atomic processes in plasma (4h) M. Benis
o Basics on laser-atom interactions
o Atomic and molecular processes in weak and strong laser fields.
o Basics on scattering theory.
o Electron-ion collisions and related processes in plasma.
o Hi-Tec

Lecture 4. Coherent XUV sources (2h) N. Papadogiannis
o Atomic excitation and ionization in strong laser fields
o Higher harmonics generation (HHG)
o Attosecond Physics
o Pump-probe experiments in atom and molecules
o Coherent optical control of molecular reactions

Lecture 5. Plasma physics and simulations (2h) J. Limpouch
o Numerical simulation methods
o PIC simulations
o Numerical schemes
o ALE laser target simulations

Lecture 6. Numerical modeling and simulations Lasers/Plasma (2h) V. Dimitriou
o Finite Element Analysis
o Finite Element Mathematical Modeling Philosophy
o FEM laser-matter interaction
o FEM/MHD single wire explosion

Lecture 7. Laser-driven proton sources and applications (3h) L. Volpe
o Laser-driven proton sources
o Protons as diagnostics
o Proton stopping power measurement

Lecture 8. Plasma as a fluid /Waves in plasma (2h) M. Tatarakis
o Plasma a fluid
o Waves in plasmas
o MHD equations
o Propagation of E.M. Waves in magnetised plasmas

Lecture 9. From perfect gas to QDM: applications to planetary physics (2h) M. Koenig
o Perfect gas
o Statistics for degenerated electrons
o One Component Plasma
o Density Functional Theory
o Quantum Molecular Dynamics (QMD)
o Applications to Planetary Physics

Lecture 10. Hydrodynamic instabilities and implications in ICF and astrophysics (2h) L. Masse
o Hydrodynamic instabilities basics
o Linear stability: a good start
o Non-Linear regime and transition to turbulence
o Implications in ICF and astrophysics

Lecture 11. Particle Acceleration Lasers/Plasmas (2h) E. Clark
o Laser driven proton beams
o Potential towards laser-driven ion therapy
Warm dense matter (2h) B. Dromey
o Definition of Warm dense matter
o Generation of warm dense matter
o Diagnosis of warm dense matter

Lecture 12. High power lasers (2h) B. Dromey
o Fundamentals of laser pulse production
o Designer light
o Ultrafast laser pulses

Lecture 13. Principles of indirect drive ICF physics/Shock waves and implosion hydrodynamics (2h) J. Pasley
o Inertial confinement fusion
o Direct and indirect drive
o Pros and cons of indirect drive
o Shock waves and implosion hydrodynamics

Lecture 14. Energy transport by laser-generated fast electron beams in dense matter (3h) J.J. Santos
o Phenomenology of intense laser-matter interactions with over-dense targets
o Fast electron beam transport in dense matter
o Diagnostics for fast electron energy transport
o Relativistic electron transport in the context of ICF and HEDM
o Magnetized HED physics

Laboratory courses: three groups of students
o Laboratory session (4h): “TW ultrafast laser system-Presentation of Laboratories”
I. Fitilis, K. Kosma, Y. Orphanos, S. Petrakis, T. Grigoriadis, M. Bakarezos
o Laboratory session (4h): “Plasma focus-Hands on Experiment”
A. Skoulakis, G. Andrianaki, G. Tazes
o Laboratory session (4h): “Laser matter interactions-Hands on FEM simulations Part I”
E. Kaselouris, A. Baroutsos, V. Dimitriou
o Laboratory session (4h): “Laser matter interactions-Hands on Experiment”
I. Fitilis, T. Grigoriadis, M. Bakarezos,
o Laboratory session (4h): “Plasma Pinch-Hands on Experiment”
A. Skoulakis, G. Andrianaki, G. Tazes
o Laboratory session (4h): “Laser matter interactions-Hands on FEM simulations Part II”
E. Kaselouris, A. Baroutsos, V. Dimitriou
o Laboratory session (4h): “Laser matter interactions and plasma-Hands on PIC simulations”
E. Clark, T. Grigoriadis, G. Andrianaki, G. Tazes
o Laboratory session (4h): “Plasma Pinch-Hands on MHD simulations”
G. Koundourakis, A. Skoulakis, E. Kaselouris