1st Intensive Programme (Rethymnon)

The first Intensive Programme IP 1 – C5 SP-HE-IPL – Intensive programmes for higher education learners & C6 SP-IP-HE – Intensive programmes for teaching staff on “Plasma Physics & High Power Laser Matter Interactions/High Energy Density Physics – Theory and Experiments” was held in Rethynon, Crete during 2-13 of July 2018.

Lectures: Michael Tatarakis, Nektarios Papadogiannis, Makis Bakarezos, Vasilis Dimitriou, Eugene Clark, João Jorge Santos, Brendan Dromey, Jiri Limpouch, Luca Volpe, Manolis Benis, John Pasley, Michel Koenig, Laurent Masse

Number of Participating Students per Organization

Technological Educational Institute of Crete 3
Panepistimio Ioanninon 3
University of York 3
The Queen’s University of Belfast 3
Universite de Bordeaux 3
Ecole Polytechnique 3
Universidad de Salamanca 3
Ceske Vysoke Uceni Technicke V Praze 3

Training Program  (Timetable)

Welcome greetings
o Mayor of Rethymnon: G. Marinakis
o Rector of TEI of Crete: N. Katsarakis
o Vice Rector of TEI of Crete: N. Papadogiannis
o Director of CPPL: M. Tatarakis

Introduction, classification of plasmas/Particles motion in a plasma (2h) M. Tatarakis
o Main plasma parameters
o Classification of plasmas
o Single particle motion in a plasma
o Drift velocity
o Magnetic mirrors

Ultrafast laser-matter interactions (2h) N. Papadogiannis
o Basics of linear laser matter interaction
o Evolution of laser technology
o Basics of Ultrafast and intense laser technology
o Basics of nonlinear laser matter interaction
o Ultrafast laser-solid surfaces interaction

Basics of laser-atom interactions and atomic processes in plasma (4h) M. Benis
o Basics on laser-atom interactions
o Atomic and molecular processes in weak and strong laser fields.
o Basics on scattering theory.
o Electron-ion collisions and related processes in plasma.
o Hi-Tec

Coherent XUV sources (2h) N. Papadogiannis
o Atomic excitation and ionization in strong laser fields
o Higher harmonics generation (HHG)
o Attosecond Physics
o Pump-probe experiments in atom and molecules
o Coherent optical control of molecular reactions

Plasma physics and simulations (2h) J. Limpouch
o Numerical simulation methods
o PIC simulations
o Numerical schemes
o ALE laser target simulations

Numerical modeling and simulations Lasers/Plasma (2h) V. Dimitriou
o Finite Element Analysis
o Finite Element Mathematical Modeling Philosophy
o FEM laser-matter interaction
o FEM/MHD single wire explosion

Laser-driven proton sources and applications (3h) L. Volpe
o Laser-driven proton sources
o Protons as diagnostics
o Proton stopping power measurement

Plasma as a fluid /Waves in plasma (2h) M. Tatarakis
o Plasma a fluid
o Waves in plasmas
o MHD equations
o Propagation of E.M. Waves in magnetised plasmas

From perfect gas to QDM: applications to planetary physics (2h) M. Koenig
o Perfect gas
o Statistics for degenerated electrons
o One Component Plasma
o Density Functional Theory
o Quantum Molecular Dynamics (QMD)
o Applications to Planetary Physics

Hydrodynamic instabilities and implications in ICF and astrophysics (2h) L. Masse
o Hydrodynamic instabilities basics
o Linear stability: a good start
o Non-Linear regime and transition to turbulence
o Implications in ICF and astrophysics

Particle Acceleration Lasers/Plasmas (2h) E. Clark
o Laser driven proton beams
o Potential towards laser-driven ion therapy
Warm dense matter (2h) B. Dromey
o Definition of Warm dense matter
o Generation of warm dense matter
o Diagnosis of warm dense matter

High power lasers (2h) B. Dromey
o Fundamentals of laser pulse production
o Designer light
o Ultrafast laser pulses

Principles of indirect drive ICF physics/Shock waves and implosion hydrodynamics (2h) J. Pasley
o Inertial confinement fusion
o Direct and indirect drive
o Pros and cons of indirect drive
o Shock waves and implosion hydrodynamics

Energy transport by laser-generated fast electron beams in dense matter (3h) J.J. Santos
o Phenomenology of intense laser-matter interactions with over-dense targets
o Fast electron beam transport in dense matter
o Diagnostics for fast electron energy transport
o Relativistic electron transport in the context of ICF and HEDM
o Magnetized HED physics

Laboratory courses: three groups of students
o Laboratory session (4h): “TW ultrafast laser system-Presentation of Laboratories”
I. Fitilis, K. Kosma, Y. Orphanos, S. Petrakis, T. Grigoriadis, M. Bakarezos
o Laboratory session (4h): “Plasma focus-Hands on Experiment”
A. Skoulakis, G. Andrianaki, G. Tazes
o Laboratory session (4h): “Laser matter interactions-Hands on FEM simulations Part I”
E. Kaselouris, A. Baroutsos, V. Dimitriou
o Laboratory session (4h): “Laser matter interactions-Hands on Experiment”
I. Fitilis, T. Grigoriadis, M. Bakarezos,
o Laboratory session (4h): “Plasma Pinch-Hands on Experiment”
A. Skoulakis, G. Andrianaki, G. Tazes
o Laboratory session (4h): “Laser matter interactions-Hands on FEM simulations Part II”
E. Kaselouris, A. Baroutsos, V. Dimitriou
o Laboratory session (4h): “Laser matter interactions and plasma-Hands on PIC simulations”
E. Clark, T. Grigoriadis, G. Andrianaki, G. Tazes
o Laboratory session (4h): “Plasma Pinch-Hands on MHD simulations”
G. Koundourakis, A. Skoulakis, E. Kaselouris

Final exams (~2h)